| Compound | Structure | Cancer type | Clinical
trial
status | |---|---|----------------------------------|------------------------------------| | DNA methylation inhibitors | | | | | 5-Azacytidine
5-Aza-CR
(Vidaza) | H H | Myelodysplastic
syndrome; AML | FDA-approved
for MDS in
2004 | | 5-Aza-2'-
deoxycytidine
5-Aza-CdR
Decitabine
(Dacogen) | HAN DO TO | Myelodysplastic
syndrome; AML | FDA-approved
for MDS in
2006 | | SGI-110 | NH-b
NH-b
NH-b
NH-b
NH-b
NH-b | Acute myeloid
leukemia; AML | Phase 2 | | Histone deacetylase inhibitors | | | | | Suberoylanilide
hydroxamic acid
(SAHA)
Vorinostat
(Zolinza) | | T-cell lymphoma | FDA-approved in 2006 | | Depsipeptide
FK-229
FR901228
Romidepsin
(Istodax) | | T-cell lymphoma | FDA-approved in 2009 | **Figure 8.** Structures of selected epigenetic drugs. Three nucleoside analogs are known that can inhibit DNA methylation after incorporation into DNA. 5-aza-CR (Vidaza) and 5-aza-CdR (decitabine) have been FDA approved for the treatment of the preleukemic disorder, myelodysplasia. Two HDAC inhibitors are also FDA approved for cutaneous T-cell lymphoma and several others are in clinical trials. Drugs targeting other epigenetic processes are in earlier stages of clinical development (see also Figs. 5 and 6 of Ch. 35 [Audia and Campbell 2014]).